Statistical Convergence and Ideal Convergence for Sequences of Functions
نویسنده
چکیده
Let I ⊂ P(N) stand for an ideal containing finite sets. We discuss various kinds of statistical convergence and I-convergence for sequences of functions with values in R or in a metric space. For real valued measurable functions defined on a measure space (X,M, μ), we obtain a statistical version of the Egorov theorem (when μ(X) < ∞). We show that, in its assertion, equi-statistical convergence on a big set cannot be replaced by uniform statistical convergence. Also, we consider statistical convergence in measure and I-convergence in measure, with some consequences of the Riesz theorem. We prove that outer and inner statistical convergences in measure (for sequences of measurable functions) are equivalent if the measure is finite.
منابع مشابه
$mathcal{I}_2$-convergence of double sequences of\ fuzzy numbers
In this paper, we introduce and study the concepts of $mathcal{I}_2$-convergence, $mathcal{I}_2^{*}$-convergence for double sequences of fuzzy real numbers, where $mathcal{I}_2$ denotes the ideal of subsets of $mathbb N times mathbb N$. Also, we study some properties and relations of them.
متن کاملStatistical uniform convergence in $2$-normed spaces
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
متن کاملEpi-Cesaro Convergence
Since the turn of the century there have been several notions of convergence for subsets of metric spaces appear in the literature. Appearing in as a subset of these notions is the concepts of epi-convergence. In this paper we peresent definitions of epi-Cesaro convergence for sequences of lower semicontinuous functions from $X$ to $[-infty,infty]$ and Kuratowski Cesaro convergence of sequence...
متن کاملWijsman Statistical Convergence of Double Sequences of Sets
In this paper, we study the concepts of Wijsman statistical convergence, Hausdorff statistical convergence and Wijsman statistical Cauchy double sequences of sets and investigate the relationship between them.
متن کاملStatistical Convergence and Strong $p-$Ces`{a}ro Summability of Order $beta$ in Sequences of Fuzzy Numbers
In this study we introduce the concepts of statistical convergence of order$beta$ and strong $p-$Ces`{a}ro summability of order $beta$ for sequencesof fuzzy numbers. Also, we give some relations between the statisticalconvergence of order $beta$ and strong $p-$Ces`{a}ro summability of order$beta$ and construct some interesting examples.
متن کامل